




# Overview of OBPR Free Flyer System Concept Ron Leung NASA/GSFC Code 594



Free Flyer Research Workshop December 2-3, 2003



Technical Contributions Al Lieberman NASA/GSFC Code 594



### **OBPR Free Flyer Theme**

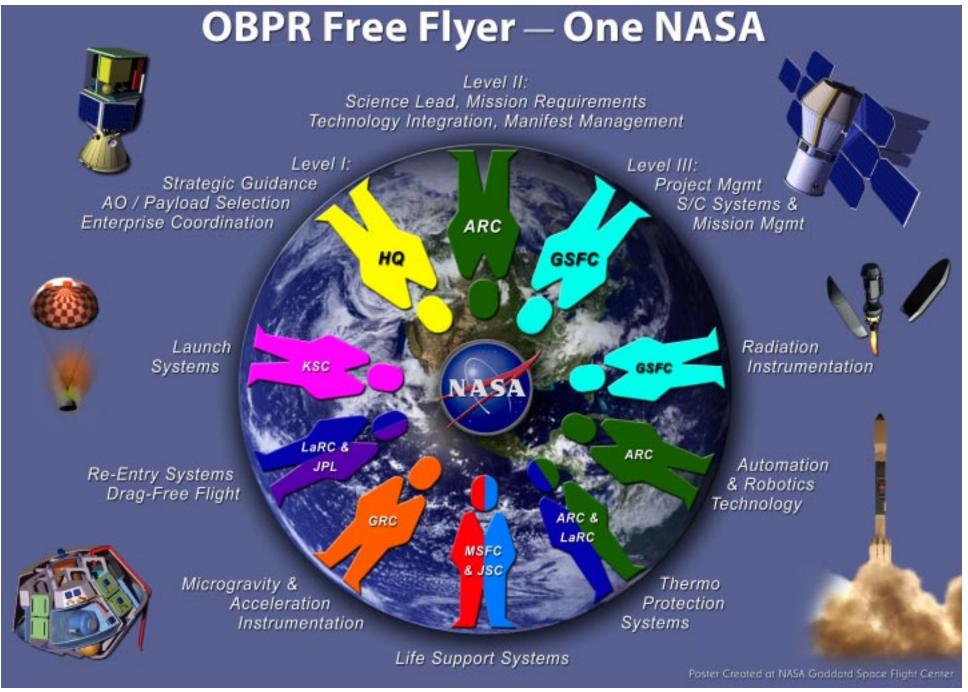


- Develop a dedicated Free Flying (unmanned) space-borne research capability for OBPR
- Need for spacebased research capability (Biological and Physical) that is complementary to the Shuttle or ISS
- Research would utilize hazardous environments not encountered on Shuttle or ISS
- Mission duration, orbital parameters, etc driven by research needs
- Free Flyer Platforms address
  - Research requirements and needs
  - Technology development
  - Education and outreach
- Would build on extensive experience from
  - Biosatellite (1960), Bion/Foton, Lifesat (study), Skylab, STS, MIR and ISS



# OBPR Free Flyer Technical Activity Last 2 Years




- 2002
  - Free Flyer ARC Workshop (June 2002)
    - OBPR Research Centers
    - NASA/GSFC
    - Research drivers for Free Flyer (FF)
    - Requirements
- 2003
  - 4 GSFC INTEGRATED MISSION DESIGN CENTER (IMDC) STUDIES
    - NASA-wide participation (January August)
  - Preliminary Free Flyer presentation to NASA Headquarters (February)
    - M. Kicza & Directors
    - Authority to Proceed
  - Coordination meetings
    - Expendable Launch Vehicle (ELV) Office (HQ/KSC) (June)
    - Space Life Sciences Experiment Research & Processing Laboratory (formerly SERPL) at KSC (June)
    - Utah Test & Training Range (UTTR) (July)
      - Conceptual Free Flyer Heavy recovery site



# GSFC Integrated Mission Design Center (IMDC) Studies



- GSFC IMDC Free Flyer Medium Study #1 (13 to 17 Jan 2003)
  - High Earth Orbit, one way/no return, beyond Van Allen Belts, 10-e5 G
- GSFC IMDC Free Flyer Heavy Study #2 (10 to 14 Feb 2003)
  - Low Earth Orbit Return, payload recovery, quiescence
- GSFC IMDC Free Flyer Heavy RV Study #3 (14 to 18 April 2003)
  - Follow-on to previous study (#2)
  - Concentrated on RV conceptual design and earth return
  - Low Earth Orbit Return, payload recovery, quiescence
  - Environmentally controlled RV payload volume
  - Provisions for live specimens and power through all mission phases
- GSFC IMDC Free Flyer Heavy Study #4 (4 to 7 August 2003)
  - Advanced System Concept Study





### Free Flyer Expertise For Studies



#### Science

- ARC
  - Fundamental Biology
  - Fundamental Space Biology
  - Previous Free flyer Experience
  - Requirements
- JSC
  - Biotechnology
- MSFC
  - Physical Science
  - Material Science
- JPL
  - Fundamental Physics
- Engineering
  - GSFC
    - Integrated OBPR Mission Free Flyer IMDC Studies
    - System & Subsystem S/C Engineers
  - JPL, LARC, ARC, MSFC, GRC
    - System & Subsystem Engineers



### Free Flyer Assumptions & Goals



#### Studies

- reference experiments derived from FF workshop (June 2002)
- developed mission & S/C concepts
- concepts only, at this point, not a design baseline
- open discussion and feedback sought from user community
- subject to change as a result of this workshop

#### Launch vehicle

- assumed FFM & FFH requirements could be satisfied by Delta II for study
- Proven reliable launch vehicle
- reduces mission costs from assuming larger launch vehicle
- Lowest possible orbit/inclination to accomplish mission
  - reduces mission costs
- FFH Re-entry Vehicle terrestrial recovery (CONUS)
  - reduces mission/operational costs
- OBPR FFM & FFH spacecraft
  - similar copies in each class
  - assumed mass production techniques employed
  - reduces mission/operational costs



# Free Flyer (FF) Total Payload Reference Concept Capabilities



| ITEM               | FF Medium<br>(FFM)                       | FF Heavy<br>(FFH)             | Secondary<br>Payloads of<br>Opportunity |
|--------------------|------------------------------------------|-------------------------------|-----------------------------------------|
| Operational (days) | 60 design (1),<br>180 goal               | 60 design (1),<br>90 goal     | TBD (ex. hrs to days)                   |
| microG (g)         | 10-e5                                    | 10-e5                         | TBD                                     |
| Orbit              | Circ, 70000 km (12 Re),<br>28.5 deg incl | Circ, 550 km<br>40.5 deg incl | depends on primary payload              |
| Mass (kg)          | 170 (2)                                  | 920 (2)                       | 0 to 50                                 |
| Volume (m3)        | 1.55 (2)                                 | 2.5 (2)                       | TBD(ex. 0.009 to 0.09)                  |
| Power (kw)         | 0.25                                     | 2                             | TBD(ex. 0.002 to 0.060)                 |
| Thermal (deg c)    | 25                                       | 20                            | TBD(ex23 to -12)]                       |
| Data (kbps)        | 58                                       | 313                           | TBD (ex. 4 to 40)                       |

- (1) For the FFM & FFH missions the limit on mission duration are the payload consumables required. The expected mission spacecraft lifetime is ≥2 years.
- (2) FFM & FFH Science payload mass includes payload structure mass & volume



# FFM Reference Payload Requirements



#### Provided by OBPR Research Centers Derived from Research Workshop June 2002

| PAYLOAD                                | MASS   | DATA                                                | VOLUME              | POWER | OPERATIONAL              | MICROG           | ORBIT |  |
|----------------------------------------|--------|-----------------------------------------------------|---------------------|-------|--------------------------|------------------|-------|--|
| PS1Biosentinel<br>Devices              | 5 kg   | 1 Mb/day for<br>10 days                             | 0.05 m <sup>3</sup> | 50W   | 30-60 days               | 10 <sup>-3</sup> | HEO   |  |
| PS4 Diffusion<br>Measurements          | 100 kg | High quality<br>video – TBD<br>frequency            | 0.5 m <sup>3</sup>  | 75W   | 21 days duration         | 10 <sup>-4</sup> | N/S   |  |
| PS12<br>Microgravity<br>Crystal Growth | 40 kg  | Video frames<br>+ control /<br>housekeeping<br>data | 0.5 m <sup>3</sup>  | 20 W  | 1 – 6 months<br>duration | 10 <sup>-5</sup> | N/S   |  |
| FB2 Yeast<br>Radiation                 | 26 kg  | Low rate                                            | 0.5 m <sup>3</sup>  | 100 W | 30 + days                | 10 <sup>-3</sup> | HEO   |  |
| TOTAL<br>PAYLOAD                       | 170 kg | Video,<br>command /<br>control,<br>housekeeping     | 1.55 m <sup>3</sup> | 250 W | 60 days                  | 10⁻⁵             | HEO   |  |



### FFM Requirements



#### Mission Driving:

- Provide payload with exposure to Galactic Cosmic Rays (GCR's) as would be experienced in interplanetary space.
- Capable of maintaining a micro-gravity environment (≤10-e5 g) once payload is delivered to orbit.
- Provide a mid-sized platform (<1000 kg) on which to fly 4 representative experiments to the GCR and microgravity environment.
- Provide late access on launch pad (L a few hours) to load biological samples and materials as required.
- Mission Derived Requirements/Parameters
  - Orbit:
    - No inclination requirement, May be elliptical or circular
  - Spacecraft:
    - Power, Communication, Attitude Control, C&DH, Thermal Control
    - Experiment Vent and Vacuum ports



#### **FFM Mission**



**Total Vehicle mass:** 

1091 kg

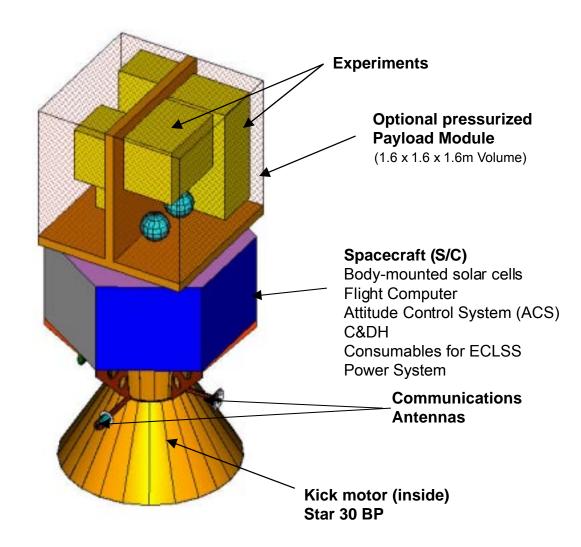
**Payload Module mass:** 

170 kg

**Launch Vehicle:** 

**Delta II-H** 

**Orbit:** 


HEO (≈ 70,000 km), circular @ 28.5°

**Continuous Quiescence:** 

Target is ≤ 10<sup>-5</sup>G

**Data Collection:** 

Telemetric (no spacecraft return )





### **FFM Summary**



- 4 reference payloads Mixed Physical & Biological payloads
  - Total mass 170kg, volume 1.55 m3
- Payloads are not returned to the Earth
- 12 Re x 28.5 deg inclination circular orbit GCR exposure,
   10-e5 micro g on orbit
- Mission Life 60 day design, 180 day goal
- Late access to payload on launch pad (biological samples & materials)
- Attitude Control System Inertial Pointing S/C
- Mechanical modular concept, aluminum, heritage S/C fixtures, brackets and fittings, 1.6x1.6x1.6 m3 total payload volume
- Data Average data rate 58 kbps, s band telemetry at 2 Mbps, s band commanding at 2 kbps, 2 days of data storage 10 Gbits
- Thermal common cold plate, payloads maintained at 25 deg c
- Pressurized payload volume possible no maintenance of atmospheric composition



# FFH Reference Payload Requirements



| PAYLOAD                                          | MASS            | DATA                                                                                      | VOL.                                   | POWER             | OPERATIONAL               | MICROG                                               | ORBIT         |  |
|--------------------------------------------------|-----------------|-------------------------------------------------------------------------------------------|----------------------------------------|-------------------|---------------------------|------------------------------------------------------|---------------|--|
| PS06 High<br>Temperature Materials<br>Processing | 120 kg          | Low rate; some video frames, 1 kbps 0.5 m³ 300 – 500W                                     |                                        | 60 days           | 10 <sup>-7*</sup>         | N/S                                                  |               |  |
| SPD2 Commerical<br>Protein Crystal Growth        | 32 kg           | High quality video –<br>TBD frequency,<br>1 Gb / day                                      | BD frequency,   MDLE   128 W   50 days |                   | ≤10-4                     | N/S                                                  |               |  |
| PS03 ISLES                                       | 300 kg          | 7 channels x 20 Hz, downlink 1/day, 2.2 kbps ~1 m³ 50 - 200 W 60 days, needs vent for LHe |                                        | ≤10 <sup>-5</sup> | N/S                       |                                                      |               |  |
| SPD6 Vulcan                                      | 128 kg          | Housekeeping data<br>+uplink of<br>Commands, 1 kbps                                       | 4<br>MDLE<br>(0.22m <sup>3</sup>       | 350 - 900 W       | ≥10 days, needs<br>vacuum | ≤10-4                                                | N/S           |  |
| FB03 Mice Radiation                              | 300 kg          | Low rate data 1kbps,<br>(Video?) 3.6 Mbps<br>for 80 min per day                           | 10<br>MDLE<br>(0.54<br>m³)             | 400 W             | 30 days                   | 10 <sup>-3</sup>                                     | N/S           |  |
| PS02 3D Tissue<br>Model Radiation                | 140 kg          | <1Mb/day + video of<br>3.6 Mbps for 30 min<br>every 3 <sup>rd</sup> day                   | 2<br>MDLE<br>(0.11<br>m3)              | 325 W             | 60 days                   | 10 <sup>-3</sup>                                     | N/S           |  |
| TOTAL PAYLOAD                                    | 1020 kg<br>Note |                                                                                           | ~2.5 m³                                | ~2 kW OAP         | 60 days                   | 10-e5 g nominal<br>* 10 <sup>-7</sup> g<br>requested | LEO<br>40 deg |  |

Note: Study results show </= 920 kg capability (payload structure included) FF Research Workshop 12/2-3/03



### FFH Driving Mission Requirements



- Provide a large (payload ~1000 kg) on-orbit laboratory on which to fly 6 representative experiment payloads to a microgravity environment in a LEO orbit.
- Capable of maintaining a micro-gravity environment (10-e5 g requirement, 10-e7 g goal) once payload is delivered to orbit.
- Provide payload re-entry capability to CONUS, reliability of hitting target landing area of 99.95%.
- Provide late access on launch pad (L a few hours) to load biological samples and materials.
- Maintain the primary launch and re-entry load vector in the same direction.
- Maintain G-load throughout mission to less than 10 g.
- Maintain payload environment for ~12 hours after beginning of reentry.



# FFH Requirements/Mission Parameters (Derived)



#### Orbit requirements:

- Inclination requirement driven only by landing range location (CONUS/UTTR assumed)
- LEO desired to allow large mass to orbit
- Must be suitable for maintenance of micro-gravity level, altitude high enough to minimize aerodrag

#### Spacecraft (SC) Driving Requirements:

- Redundancy required to reliably hit the target landing area
- Design must maintain micro-g environment

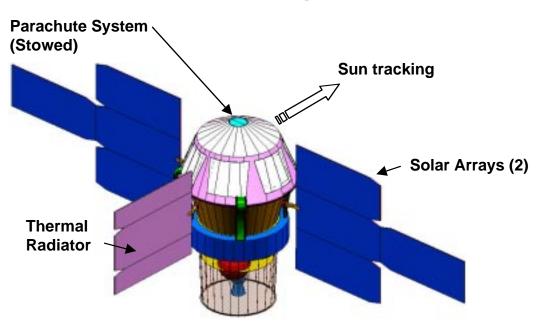
#### Re-entry Vehicle (RV):

- Provide thermal protection for re-entry
- House all payloads, ECLSS, support systems, parachute system
- Provide vent and vacuum ports for payloads
- Provide means for vehicle location during re-entry and after landing
- Provide hatches for access on pad
- Provide resources and thermal control for up to 12 hours after spacecraft separation

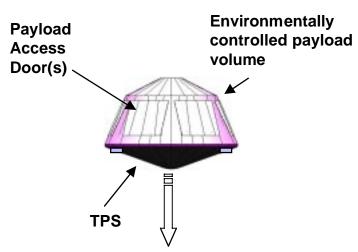
#### Launch Vehicle:

- Delta II desired to keep cost down
- Provide late access to payloads on launch pad

#### Landing Site:


Continental United Stated (CONUS) desired




#### **FFH Mission**



#### **Vehicle On-orbit Configuration**



#### Recovery Vehicle (RV)



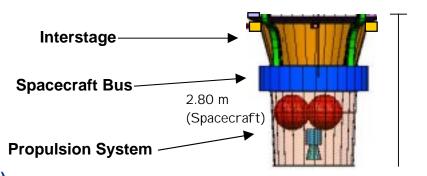
**G-Vector when present is unidirectional** 

Total Vehicle mass: 3453 kg

RV mass: 1963.9 kg

Payload module mass 921 kg

RV Volume: 4.3 m<sup>3</sup>


Payload Volume: 2.5 m3

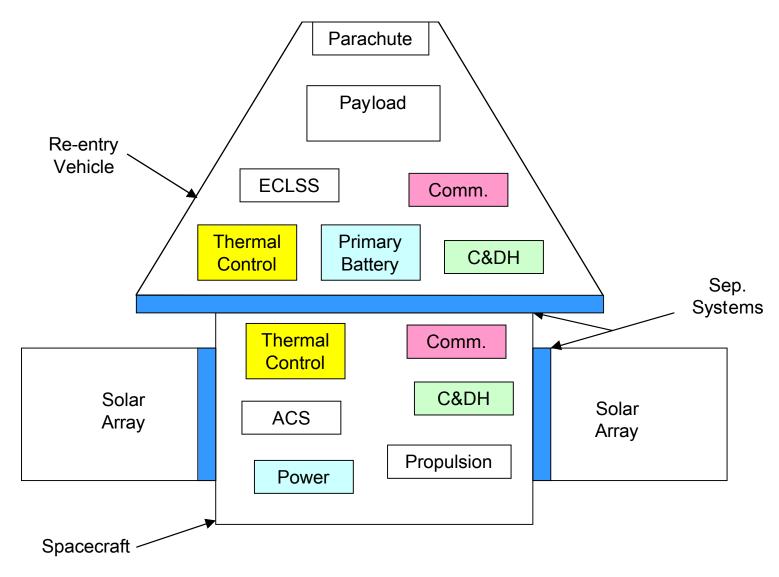
**RV Diameter: 2.44m** 

Launch Vehicle: Delta II Heavy

Orbit: 550 km circular @ 40.5°inclination

Recovery: Utah Test & Training Range (concept)

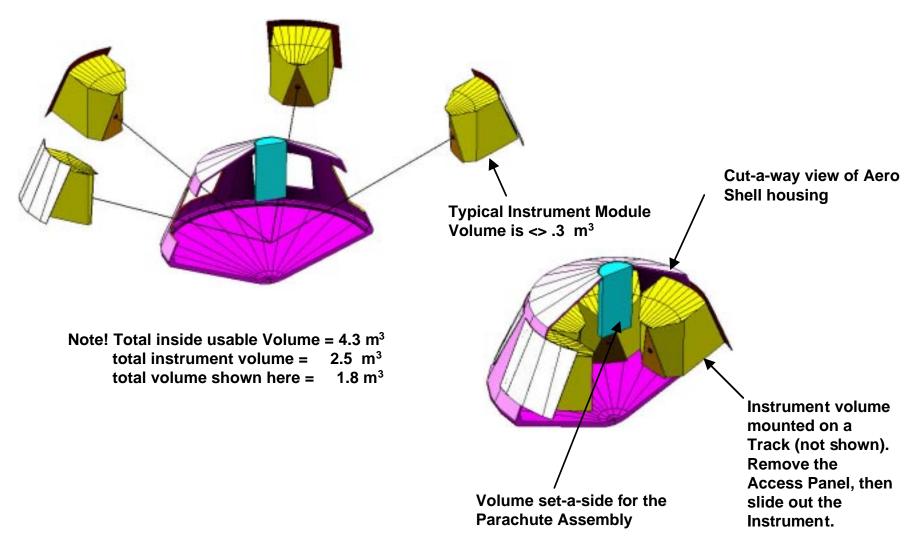



FF Research Workshop 12/2-3/03

Spacecraft



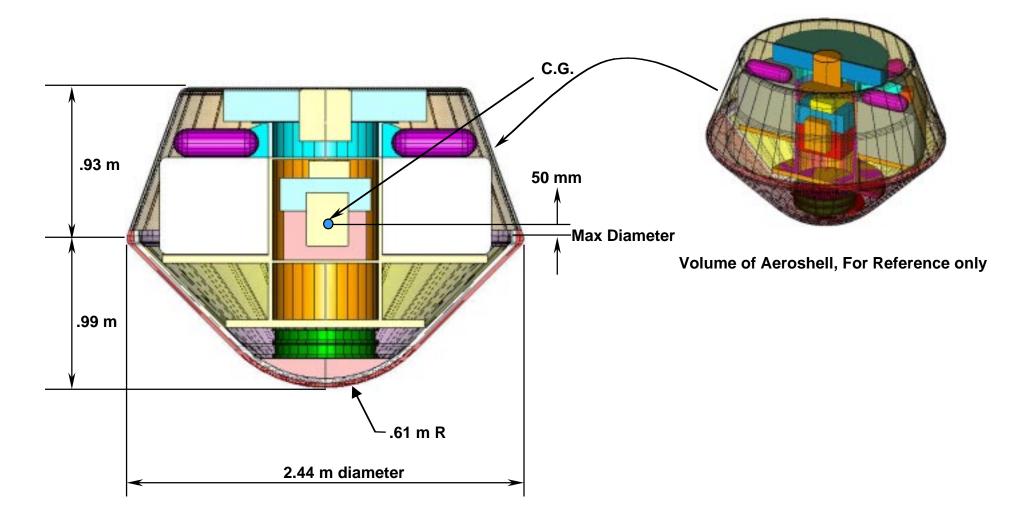
# FFH Block Diagram Concept








# FFH Aeroshell & Payload Modular Concept








# FFH Aeroshell & Toroidal Payload Concept







### **FFH Summary**



- 6 reference payloads Mixed Physical & Biological payloads
  - Total mass <920 kg (structure included), volume 2.5 m3</li>
- Payloads are returned to the Earth
- 550 km x 40 deg Circular orbit 10-e5 micro g on orbit
- Mission Life 60 days design, 90 days goal
- Late access to payload on launchpad (biological samples & materials)
- Attitude Control System Inertial Pointing S/C
- RV Mechanical modular or toroidal payload concept, aluminum honeycomb aeroshell, 2.5 m3 total payload volume
- Data Average data rate 313 kbps, x-band telemetry at 20 Mbps, s band commanding at 2 kbps, 1.5 days of data storage 40 Gbits
- Thermal common cold plate, payloads maintained at 20 deg c, TPS for re-entry aeroshell
- ECLSS Provides atmospheric constituents, revitalization, monitoring, total pressure control, sensible heat control



### Secondary Payloads of Opportunity



- Third class of flight opportunity under Free Flyer Program
  - 1 kg to 50 kg
- Small, self-contained OBPR research payloads
  - Technology demonstration/development
  - Education
  - Public Outreach
- High level concept only at this time
- Accommodated on other primary missions with excess margins
  - FFM, FFH and other possible NASA/DOD/commercial/international missions
  - Must meet mass, volume, power, data etc margins allotted by primary
- Assumed
  - No interference with primary mission
  - Accommodate orbital parameters of primary mission
  - Launch schedule of primary is sacrosanct
- Examples
  - Nanosatellites
  - Picosatellites



# Free Flyer Study Derived Constraints FFM, FFH



- Dollars
  - Attempt to keep total program costs constrained (e.g. Launch Vehicle)
- Mass Margin (over Delta Launch Vehicle capability)
  - FF Medium [non return,70,000km (12 Re)] 25%
  - FFH Heavy (baseline, return, 550 km) 34%
- Volume
  - FF Medium & FFH Heavy have adequate volume for reference payload
    - Modular Accommodation
    - Late Access
- Other
  - FFH
    - Landing Site, S/C launch pad accessibility, power, propulsion, thermal









### Workshop and Requirements



- Expect more detailed scientific requirements as a result of this workshop
- Please review the requirement matrices for Splinter Session 2 in which you will provide your proposed experimental scientific requirements for
  - FFM Spacecraft
  - FFH Spacecraft
  - Secondary Payloads of Opportunity
- Future studies will be based on these requirements



# Scientific Requirements Matrix



| Spacecraft Capabilities    | Mission Duration (months) | Sample Recovery (Yes / No)<br>Why? | SC MicroGrav (DC, Vibration)<br>Why?                              | Is inflight variable G required?<br>If so, what level?                                   | Orbit (e.g., LEO, HEO, other)<br>Why?               | Orbit: Access to radiation types (proton, electron, GCR, etc), other key space environmental conditions | Can expt. be kept in "sleep<br>mode" for delayed activation                                                   | Pressurized (yes/no) Life<br>Support Needed (temp, rel.<br>humidity, etc)                   | Access to payload (pre-<br>launch; launch; post launch);<br>timeframe (days / hours) | Special Needs: Contamination (internal, external, cross), chemicals, processes, etc. | Data /Video Requirements                                                                                  | Power (Peak, Orbit Average,<br>Keep Alive (launch, DeOrbit,<br>Safe Hold) | Thermo Loads (peak / ave): Range, Conditions (eg cryo, life, "hot"), provide temp range if possible | Mass Range (kg) | Volume range (m3) | Vibration (ranged needed)                   |
|----------------------------|---------------------------|------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------|-------------------|---------------------------------------------|
| EXAMPLE:                   | 1-6                       | No                                 | 10E-5 to<br>10E-6 for<br>10 days;<br>15 days<br>of .3 to .5<br>Gs | 15 days of<br>.3 to .5 Gs -<br>provide<br>profile and<br>why?(see<br>previous<br>column) | Desire<br>GEO; both<br>LEO and<br>HEO<br>acceptable | electron<br>particles<br>predominately;<br>need<br>exposure rate<br>and duration                        | activate<br>12d after<br>launch with<br>telemetered<br>data needs<br>only; no<br>ground<br>commands<br>needed | Self<br>contained<br>pressured<br>environment<br>with internal<br>"sea level"<br>atmosphere | Pre-launch<br>15 days;<br>post<br>launch<br>none<br>require -<br>no return<br>needed | Methanol<br>reagent<br>used                                                          | 500-<br>600bps<br>downlink<br>data; 10-<br>20 digital<br>photo<br>quality<br>pictures<br>800x600<br>pixel | 500 mW ave;<br>800 mW turn-<br>on only 30<br>sec.;                        | 1.5 W<br>dissapated                                                                                 | 70-90           | (80cmx80          | less then .5 G operating; 3 G non-operating |
| Research<br>Goal A         |                           |                                    |                                                                   |                                                                                          |                                                     |                                                                                                         |                                                                                                               |                                                                                             |                                                                                      |                                                                                      | resolutio                                                                                                 |                                                                           |                                                                                                     |                 |                   |                                             |
| Research<br>Goal B         |                           |                                    |                                                                   |                                                                                          |                                                     |                                                                                                         |                                                                                                               |                                                                                             |                                                                                      |                                                                                      |                                                                                                           |                                                                           |                                                                                                     |                 |                   |                                             |
| Research<br>Goal C         |                           |                                    |                                                                   |                                                                                          |                                                     |                                                                                                         |                                                                                                               |                                                                                             |                                                                                      |                                                                                      |                                                                                                           |                                                                           |                                                                                                     |                 |                   |                                             |
| Research<br>Goal<br>(etc.) |                           |                                    |                                                                   |                                                                                          |                                                     |                                                                                                         |                                                                                                               |                                                                                             |                                                                                      |                                                                                      |                                                                                                           |                                                                           |                                                                                                     |                 |                   |                                             |

# What Size?



12/3/03





# **APPENDIX**

- (1) TYPICAL LAUNCH VEHICLE SEQUENCING & PERFORMANCE
- (2) ECLSS
- (3) PARAMETRIC STUDY OF SPACE RADIATION EXPOSURES



# OBPR-FFM Delta 2920H & Mission Profile



# CONCEPT ONLY NOT SPECIFIC TO OBPR

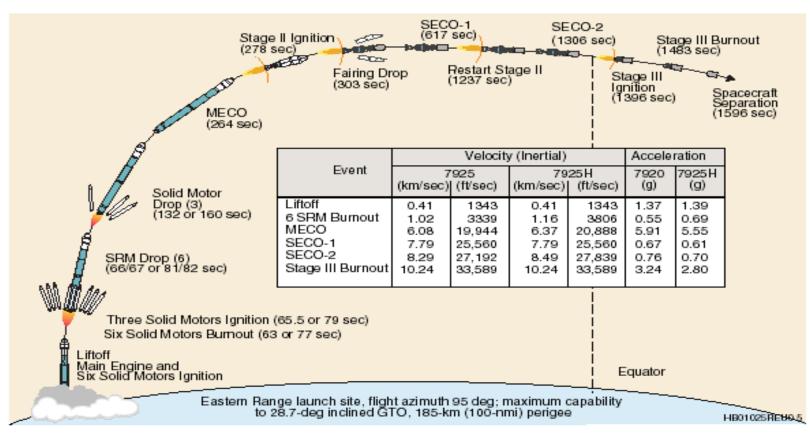



Figure 2-5. Typical Delta II 7925/7925H Mission Profile—GTO Mission (ER Launch Site)



# OBPR-FFH Delta 2920H & Mission Profile



# CONCEPT ONLY NOT SPECIFIC TO OBPR

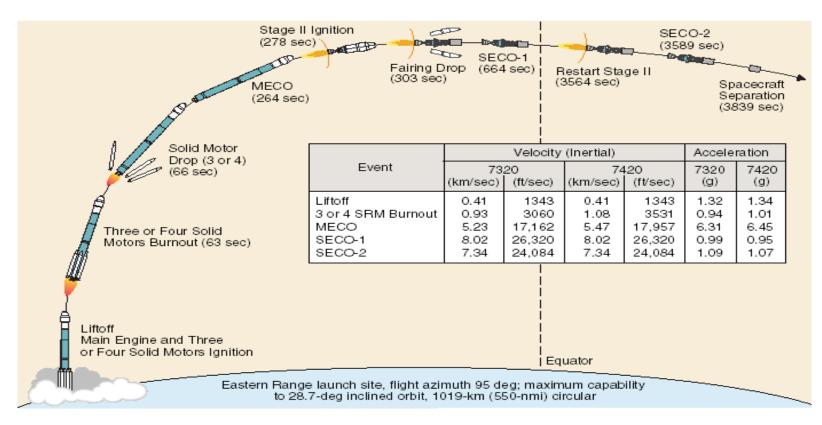



Figure 2-3. Typical Delta II 7320/7420 Mission Profile—Circular Orbit Mission (ER Launch Site)



# Office of Biological and Physical Research FFM and FFH



# CONCEPT ONLY NOT SPECIFIC TO OBPR

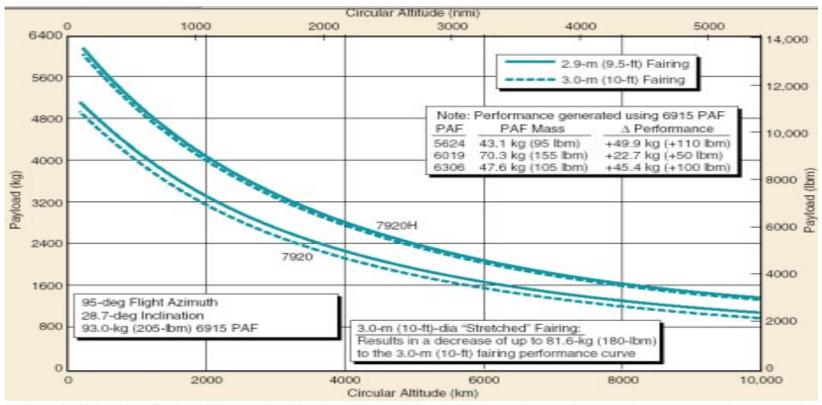
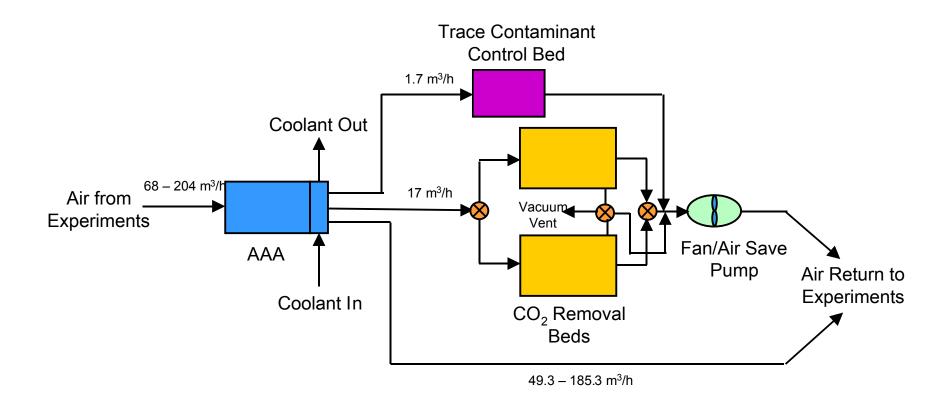




Figure 2-22. Delta II 7920/7920H Vehicle, Two-Stage Circular Orbit Altitude Capability-Eastern Launch Site



# FFH RV ECLSS Flow Diagram



